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Abstract--The dynamics of pellets in a gas-filled vertical column are investigated by analytical methods 
and including considerations of  molecular dynamics simulation. For some extremes of  interest, we find 
effective formulations for generally intractable cases thereby allowing useful parametrization and 
numerical assessments. As a particular case, pellet mean residence times for a range of  exit constrictions 
are assessed. Copyright © 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

The motion of particles in turbulent flows is a long-standing subject of interest with both 
experimental (e.g. Kaftori et al. 1995) and numerical (e.g. Datta and Dalai 1995; Pedinotti et al. 

1992) advances continuing to be reported. A new important application of such phenomena has 
recently arisen in connection with the development of a fuel pellet suspension nuclear reactor which 
appears to offer deterministic avoidance of a core melt accident; in such reactors, the core consists 
of a set of vertical columns which are filled by fuel pellets vertically distributed by a suspending 
gas coolant flow (Harms and Fundamenski 1993). For the case of an incipient loss-of-coolant 
accident, the core discharges into a subcritical configuration with perpetual packed-bed cooling in 
a catchment by the most reliable of safety mechanisms: gravity. 

The unique features associated with pellet discharge in a vertical column involves considerations 
beyond sedimentation (Maleki-Ardebili 1995) and conventional heat transfer investigations (Datta 
and Dalai 1995) in horizontal flows with low Reynolds numbers; these studies are commonly based 
on the Stokes approximation for the drag force, as employed, for instance, by Pedinotti et al. 

(1992), Datta and Dalai (1995), Mei et al. (1991). For the pellet suspension reactor concept, Harms 
and Kingdon (1993) showed that pellets falling with terminal velocities, have Reynolds numbers 
far beyond acceptability of the Stokes approximation. Indeed Reynolds numbers may reach values 
of 200 and more and it is therefore critical to find an appropriate model for description of the free 
particle motion (Maleki-Ardebili 1995). 

In this work we report on the development of an approach to one feature of this fail-safe reactor 
concept namely the accidental discharge of the fuel pellets in the core. We define these dynamics 
by the following: the coolant pressure has dropped in such a way that the coolant is at rest or the 
coolant flow is slow enough to be laminar. In this case we establish a useful approximation for 
the drag force leading thereby to an analytical description of fuel pellets trajectories which can be 
effectively used in the computational simulation of pellet distributions, reducing the CPU time by 
several orders of magnitude, and allowing thereby the analysis of more realistic physical models 
of reactor cores. The laminarity assumption is important for this, but it represents only one and 
the simplest scenario of a loss-of-coolant accident. Furthermore, no experimental data of collision 
properties of fuel pellet shells and column walls have appeared and hence we have to accept the 
simplest assumptions: frictionless and energy conserving collisions. However, the results described 
below for these extreme simplifications seem to be quite acceptable for initial scoping assessments 
suggesting also that further analytical, computational, and experimental investigations need to be 
pursued. 
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The mean residence time of  the pellet is o f  part icular interest and is evaluated by averaging the 
data  obtained for pellets with r andom initial conditions. 

2. THE D R A G  F O R C E  M O D E L  

Spherical pellets with diameter d and material density pp move in the vertical column with height 
H and diameter D which is filled by a gas (e.g. helium) coolant  characterized by a dynamic  viscosity 
# and density p~oo~. A consistent set o f  the parameters  above is listed in table 1 based on a scoping 
study of  Ha rms  and Kingdon  (1993); we will label these parameters  as "the scoping parameter  set". 
The gravity and the pellet velocity define a plane, which will contain the drag force as well; 
therefore, for description o f  individual pellet trajectories the considerat ion can be restricted by two 
dimensions. We denote the position vector o f  the pellet and its components  by R = (X, Z), time 
by T, and the velocity by (dR/dT)  = V = (V~, V_-); here the X-axis is directed horizontally to the 
right, and Z-axis--ver t ical ly  upward.  Posit ion and time are non-dimensionalized with pellet 
diameter d and the constant  ~ = p~oo~d2/i ~, respectively, and, specifically, the dimensionless position 
r = ( x , z ) = R / d ,  time t = T / z ,  and velocity v = ( v x ,  v : ) = r - ( d r / d t ) = R , V ,  where R , = ~ /  
d = p~oo~d/l~ (table 1). Commonly ,  the pellet Reynolds  number  is equal to R, IV] and therefore v = Iv] 
is the Reynolds number.  Due  to the substantial difference between the fuel and coolant  densities, 
we neglect the buoyancy,  the added mass and inertia of  the displaced gas terms in the equation 
o f  mot ion,  as well as the Basset term so that the equat ion o f  mot ion  is evidently 

3 pcool vv 
+ =  - 7~ C °  - R ;  g d ,  

Pp 
[1] 

where g is the gravitat ional  acceleration, g = ]g] > 0, and the drag coefficient, Co, is assumed to 
depend only on the Reynolds number  and is usually taken in the form like ~ / v  + f ly; '-2.  

According to Clift e t  al .  (1978), for the range v < 800, the best correspondence to experimental 
data  is provided by ~ = 24, fl = 3.6 and 7 = 1.687 with a tolerance o f  ~+45%. As will be shown later, 
in our  case v < Vmax = 230 and one may  seek to find a simpler form of  the C o ( v )  nonlinearity in 
order  to treat the problem analytically. We note that  for relatively small v values, details o f  the 
function C o ( v )  are not  very impor tant  due to the multiplier vv in [1]. For  the same reason, it seems 
to be more  impor tant  to attend to the uncertainty o f  the function Co,, - -  v2CD = ~V + f lY'  rather than 
that  o f  Co. Evidently, the simplest form of  nonl inear i ty- - the  binomial form 
Co,.(v,  a j ,  a 2 ) =  a~v + azv2--needs to be examined. In particular we employ the least squares 
criterion minimizing Err - ~m,~ (Co,. - -  Co , )  2 d v  by demanding 8 E r r / 8  a~ = 0. The latter leads to ~,~ 

Table 1. Scoping and derived parameters for the pellet-column system of interest 

Category Parameter Value 

Scoping 

Derived 

Dimensionless 

Coolant viscosity, # (kg/m * s) (at T = 600°C) 4.06 × 10 -5 
Coolant density, p~oo~ (kg/m 3) (at T = 600°C) 2.75 
Pellet diameter, d (m) 5 x 10 4 
Fuel (UC) density, pp (kg/m ~) 13 630 
Column height, H (m) 5.0 
Column diameter, D (m) 0.2 
Pellet volume fraction, ~ 10% 

z = (pcoo,d2/p) (s) 0.017 
R, = (pcootd/#) (s/m) 33.9 

vm~ 230 
a~ 56.8 
a2 0.522 
A = 3(p~oo,/pp) a,_ 7.90 x 10 -5 
B = ~(p~ool/Pr) al 4.30 × 10 
C = ( p ~  5.62 
Do = x /  AC~-  B~ 0.206 
Da = 2 x / A C  + -B 2 0.430 
Vterm 218  

vo 327 
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Figure l. Experimentally determined function Co, (Cliff e/al. 1978) and approximation ¢~o, developed 
herein in comparison with Stokes law. 

( C o , -  Co,.)v i dv = 0, i = 1, 2. The solution for a, and a2 gives 

a1=o~+12f l ,~ i , (  4 5 ) 
2 + ?  3 +  ' 

[21 

(4 3) 
a2=20flvLL 2 3UF7 2 + 7  " [3] 

Substitution of  the Vm,x value and the scoping parameter set provides the values of a~ and a2, table 
1. Figure 1 shows that the approximation CD,. obtained corresponds very well to Co, for the values 
of v giving the drag force comparable with the pellet weight; for the entire v range: 0 ~< v ~< v . . . .  
the relative force error I IF [ -  IFII/mg does not exceed 1.2% and is less than the initial Co 
approximation error; here F is the force calculated with Co,. instead of Co,. 

The binomial approximation therefore is comparable to existing experimental functions, though 
it is not necessarily preferred for the description of experimental data. The advantage of this 
description can be understood from another point of view and will be expanded upon in the next 
chapter: its analytical simplicity allows one to obtain an analytical one-variable integral 
parametrization of  pellet trajectories, providing thereby a powerful tool for effective computational 
simulations. 

3. PELLET TRAJECTORIES 

With the use of CD, = a~v + a2v 2, [1] can be written as 

G = -- (Av + 2B)v,, 

(;: = -- (Av + 2B)v.- - C, 

[4] 

[s] 
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where A = R ~ g d  = 3 pcoola2/pp, B = 3 ~pcoo~a~/pp, and C = p~oo~gC¢/l~ 2 for the scoping pa ramete r  set are 
listed in table 1. 

The variables in [4] and [5] cannot  be separated but  some physical features of  the p rob lem of  
interest, in par t icular  the oblong geometry ,  can help to simplify the equations.  N o r m a l  operat ional  
suspension regime implies a coolant  flow velocity comparab le  with the terminal  velocity which is 
the m a x i m u m  velocity of  the falling pellet. Then,  the order  of  magni tude  of  pellet velocity 
f luctuations is defined by the scale of  turbulent  f luctuations of  the flow. For  our  conditions,  this 
is less than 10% of  the suspension velocity (Warsi 1993). Hence,  we can expect that  after s topping 
the coolant  flow, the m a x i m u m  of  the pellet horizontal  velocity will be approx imate ly  an order  of  
magni tude  less than  the terminal  velocity. When  a falling pellet acquires the vertical velocity 
comparab le  with the terminal  velocity, i.e. v ~ v ..... the v~-dependent par t  in the expression 
v = Iv:Ix/1 + (v~/v:)  2 is negligible, typically not exceeding 0 .5%, so that  v ~ ]v_-I. In the al ternative 
case, when the pellet vertical velocity is comparab le  with the horizontal  velocity, i.e. 
I v_-I ~ lye] < 0.1 • v ...... the total  Reynolds  number  and, accordingly,  the drag force are too small 
for us to be interested in details o f  the function Co, 0') behaviour;  in this case the substi tution v 
by Iv_-] will not  affect the pellet dynamics  significantly. Thus in the entire range of  v this variable 
in [4] and [5] can be substi tuted by Iv:l; having done  that, [5] becomes independent  of  [4], 

~: = - (A  I v : l +  2B)v :  - C ,  [61 

and, after  integrat ion and substi tut ing into [4], the latter can be further  integrated as follows: 

v, = v,(O) e - 2 e ' e x p  - A v - ( t ) l d t  . [7] 

In order  to solve [6], we have to consider a rising par t  o f  a trajectory: v-~> 0 - - i n  this case all 
variables and pa ramete r s  will be supplied by the subscript  " u " - - a n d  a falling part:  v: < 0 ~ f o r  
which we will use the subscript  "d" .  With  this nota t ion,  we can separate  [7] into two parts: 

v,u = V,u(0) exp{ - A [ z , ( t )  - z°(0)] - 2 B t } ,  [8] 

V,d = Vxd(0)exp{A[Zd(t) -- Zd(0)] -- 2 B t } .  [9] 

We consider the rising par t  of  the t rajectory first. 

3. I. R i s i n g  t ra j ec to ry  

Using the pa rame te r  Du - ~ -  B 2 (table 1), we can write the solution of  [6] for the rising 
t rajectory as 

v:.(t) = l { D u  tan[(/ .  -- t)Du] -- B}, [10] 

where the integrat ion constant ,  Iu, is defined by 

1 
Io = ~ arc tan  P [11] 

with 

P = (Av:u(0) + B) < emax ~ K(mVmax + B). [12] 

The  t ime to m a x i m u m  height, t,, is defined by v:u(tu)= 0, yielding 

1 B 
t~ = / ~  - ~ arc tan ~ .  [13] 

Interestingly, regardless of  the initial v-(0) > 0, this t ime never exceeds the value t . . . .  = n / 2 D o ,  or 
approx imate ly  1.3 s for  the scoping pa rame te r  set. 
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Integrating [10] we obtain 

1 I lnC°SDo( lo- - t )  ] 
z~(t) -- z~(0) = ~- cos D~I~ Bt . [14] 

Since 0 ~< t ~< tu, we have 0 < arctan(B/D.) ~< D,(/ ,  -- t) < arctan Pm,x < ~/2, SO we need not take 
the absolute value for the logarithm argument. According to [11], we can replace cos D,I, by 
1/~/1 + ez. 

Analyzing a trajectory, it is necessary to check, for example, that the pellet has not reached the 
upper boundary of  the column. For  this, we have to be able to solve algebraic equations like 
zu(t) = const, with respect to t. But the right hand part of [14] cannot be inverted to express 
t = z£~(z,) through any known functions. For  our purposes, we have to do extensive numerical 
calculations with a large number of  pellets, and it is impossible to employ any numerical algorithm 
to invert [14] for any pellet with arbitrary initial state due to excessive CPU time consumption. 
Obviously the only way to be acceptable is to tabulate [14] with appropriate precision, and then, 
while inverting, to use a linear interpolation. But [14] depends on two variables: time, t, and, 
t h r o u g h / ,  and P, on the initial value, v.,(0). The tabulation of  this function will be demanding 
and limit the advantage of  using analytically defined trajectories in comparison with direct 
numerical integration of  the initial differential equations of  pellet motion. To avoid this deficiency, 
we rewrite [14] in the form 

m E ' zu(t) = z.(0) + ~ ~ In(1 

where the new function (I)(q) is defined by 

q~:~(q)=~ l n c o s q + ~ q  , 

+ p2) _ BI~ 1 + ~._~(Du(Io -- t)), [15] 

B 
arctan ~ ~< q < arctan P . . . .  [16] 

Thus, we have excluded the dependence on initial conditions in the function (I).-u(q) and, for any 
parameter set, we need to tabulate this function of  one variable only once prior to simulations. 
For  the scoping parameter set, it is depicted in figure 2(a). 

To determine the horizontal motion during rising, we substitute [14] into [8] to yield specifically 

Vxu(t) = vxu(0) e -B' 
x/1 + p2 cos Du(I, -- t)" [171 

After integrating this equation we need to consider the choice, if possible, of functional expressions 
which-- though c o m p l e x ~ e p e n d  on only one variable. Following the necessary integrations and 
variable substitutions, we obtain 

where 

vxo(0) e -~" xu(t) = Xu(0) + D u ~  [~xo(Dulu) - (I)x~(Du(/~ - t))], [18] 

B 
~0 q exp ~ q dq, arctan B __ ~< q < arctan P .. . .  [19] (l)xu(q) = - - c o s  q /--'u 

The tabulation of this function, from the numerical point of view, is not much harder than in the 
previous case. The result for the scoping parameter set is depicted in figure 2(b). 

Having the solutions in forms [15] and [18] and taking into account the monotonic character 
of  [16] and [19], we can formulate a simple and fast algorithm (e.g. dichotomic) for finding the 
time of  pellet collision with any plane Lx + Mz + N = 0, where L, M, N are constants; in addition, 
we can also consider collision even with another pellet which has different values of v:u(0), vxu(0), 
/~, and P, in [15] and [18]. 
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3 .2 .  F a l l i n g  t r a j e c t o r y  

For  the alternative case v: < 0, we introduce the parameters  Dd = 2 x / / ~  + B 2, v . . . .  = (Dd - -  2 B ) /  

2A, and vo = (Dd + 2 B ) / 2 A  (table 1). These parameters obey the equality: 
Av2:d - -  2Bv:d -- C = A(V:d + V~0rm)(V:d -- V0). Hence, the solution o f  [6] can be written as 

- -  Uterm -~- VOid e -Ddt 
v:d(t) = 1 + /de -°d' [20] 

with the integration constant  given by 

U . . . .  -Jl"Vzd(0) 
Id -- V0 -- V:d(0) < 1. [21] 

The limit lim,--~V.-d(t) = - Vtorm can be called " the  terminal Reynolds  number" ;  for the scoping 
parameter  set its absolute value is approximately  218, corresponding to the terminal velocity 
Vte~m = violin~R,, .~ 6.4 m/s. 

Integrat ion o f  [20] yields 

1 
Z d ( t ) = Z d ( O )  - U  . . . .  t - F i n  

1 + / d e  ~ '  
l + I d  

[22]  

One typical part icular situation is interesting: if initially a pellet rises, then a falling trajectory will 
start with V:d(0) = 0; in this case then 

1 - -  e -D# 
V=o(t) = - V~e~m , [23] 

1 + Vterm e_Od t 

Uo 

1 u0 --~ Uterm e -Ddt 
Zd( t )  = Zd(O) - -  Vt~rmt - -  -~ In Vo + Vte~m [24]  
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Figure  2. Dimens ion less  funct ions  ~:,(q) and  ~ , , ( q )  used for r is ing t ra jectory descript ion.  
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Figure 3. Dimensionless functions (1):a(p) and @~d(p) used for falling trajectory description. 

Fo r  the scoping pa rame te r  set a pellet will obta in  50% of  the terminal  velocity approx imate ly  in 
0.4 s proceeding a distance approx imate ly  0.7 m. 

T o  determine the t ime range for  [22], we need to est imate the m a x i m u m  time, td . . . .  o f  pellet falling 
in the co lumn with height H - - a  nominal  value is H = 5 m (Ha rms  and Kingdon  1993)- -by  solving 
the equat ion  Zd(tdmax) = 0 with initial conditions: v:,(0) = 0, Zd(0) = H / d .  For  the scoping pa rame te r  
set the numerical  solution gives /dmax = 74 or 1.25 s. 

As for  the previous  subsection, we have to t rans form this equat ion to reduce it to a 
t ranscendenta l  funct ion of  one variable.  T o  do this, we define the cons tant  to = - (l /D0) In Id > 0 
and  obta in  

zd(t) = zd(O) + V,~rmtO + 1 In(1 + Id) -- ~.-d(Dd(to + t)), [251 

where the funct ion to be tabula ted  is given by 

1 / ? t e r m  
~:a(p) = ~ ln(1 + e -p) + -~-d p ,  Dd/omin ~< p < Od(/Omax + /dmax) [26] 

and  displayed in figure 3(a). Here  t0min = (1/Dd) ln(vo/Vte~m) and /0max : - -  (1/Dd) In E, where E is the 
least C P U  nonzero  number ,  i.e. the least E such that  1 + c # 1. Fo r  the scoping pa rame te r  set and 
ord inary  precision (e ,-- le - 7), which seems to be quite acceptable,  /0min ~ 9 and t0max ~' 375, or 
6.4s.  

Fur ther ,  [22] and  [9] yield the fo rmula  for  vx~ as 

vxa(t) = vxd(O)(1 + Ia) e -¢at't~m + 2a)t 
1 + Ia e -°d' 

[27] 
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which upon integration provides specifically 

xd(t) =Xd(0)+ 
v ..... (1 + Id) e IA'' ..... 2B~,,, 

Dd [qb"d(Od(t° + t)) -- O,-d(Ddt0)], 

where 

[281 

e x p (  Av . . . .  Dd+2Bp)  

Oxd(p) 
Jo 1 + exp(--p) 

dp, Ddtom,n ~< p < Dd(t0max q- trim.x). [29] 

This function is depicted in figure 3(b). 

4. COMPUTATIONAL SIMULATION 

The derived expressions for xo(t), Zu(t) and Xd(t), zd(t), together with four universal O-functions 
[19], [16], [29] and [26]--which are independent of initial conditions--allow the determination of 
points and times of pellet collisions with the column walls and with each other by the dichotomic 
search through the tables containing the values of the O-functions. 

In order to investigate statistical properties of the pellet community, we judge that the direct 
tracing of pellet trajectories, frequently called the "molecular dynamics" methods (Hoover 1986), 
appears to be the most appropriate technique. The compromise between computational restrictions 
and representativity of simulations requires the choosing of a reasonable number of pellets in a 
simulation, e.g. N ~ 103 and is subject to one of the alternatives: 

(a) to study the collision mechanism influence of pellet dynamics, we have to sustain the pellet 
volume fraction rather than the pellet diameter; that will cause a change in the column 
diameter--pellet diameter ratio from 400 to approximately 20, or 

(b) to realistically describe the drag force, the pellet diameter is the main parameter and, hence, 
should be taken from table 1; this will significantly lower the pellet volume fraction. 

I I I 
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Figure 4. Spline interpolation for the pellet mean residence time, :r, as a function of the ratio AD/d, where 
AD is the lower end gap and d is the pellet diameter. 
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Simulations of the pellet dynamics with the use of  the technique developed by Kornilovsky et al. 
(1995), in an empty (vacuum) column with the dimensions according to table 1 and column 
diameter-pellet diameter ratio equal 20, for N = 1000 pellets, have shown that about 80% collisions 
are of  the pellet-pellet type. In the case under investigation here, and seeking to describe realistically 
the drag force, we have to take the column diameter-pellet diameter ratio to be equal to 400 
according to table 1. Simulations in the empty column demonstrate that pellet-pellet collisions are 
rare--only  approximately 17% of all collisions for the same number of  pellets. For  this a reason 
exists to expect that mutual collisions are not very important factors in affecting the mean time 
of  pellet residence in the column. Based on this assumption then we consider the case when mutual 
collisions can be neglected. In this case it is sufficient to model collisions of  one pellet with the 
column walls to determine the most interesting parameters of  pellet dynamics--the time to escape 
through the low open end of  the column, that is the pellet residence time. As the lower open end 
of  the column needs to be narrowed in order to avoid pellet loss in the normal suspension regime 
(Harms and Fundamenski 1993), we model this end to be of the cone shape with the lower gap 
to be chosen. We then take a pellet with initial conditions randomly chosen from the uniform 
distribution and trace the pellet trajectory until it leaves the column; the number of repetitions is 
chosen until stable estimate for the mean residence time zr is obtained by averaging. 

For  our computational simulation, we take the height of  the cone part to be equal to 0.1 • H, 
and vary the gap in the range 10d-200d. Experiments suggest that in order to arrive at a stationary 
estimate for mean residence time, averaging data for 100 pellets' escapes appears sufficient. The 
result is depicted in figure 4 and shows that this escape time is approximately constant and less 
than 1 s if the gap width exceeds 50d = D/8. 

5. SUMMARY AND CONCLUSION 

Critical to the determination of non-equilibrium micro-pellet dynamics in gas-filled vertical 
columns is the description of the drag force. The approximation we have here developed appears 
in excellent agreement with experiment and generally well suited for analytical purposes. Of further 
importance is the selective application of molecular dynamics considerations rendering thereby a 
difficult problem tractable. For the case of  interest, pellet-pellet collisions are rare, obviating the 
need to trace simultaneous motion of pellets, but the approach undertaken here permits its ready 
extensions to a denser pellet gas. A useful and effective methodology for a class of complex 
non-equilibrium problems is thus established. 

In general, the parametrization developed herein can be employed for effective examination of 
a wide class of  problems dealing with particle dynamics in gas-filled vertical columns, including 
evaluations of importance to the development of  pellet suspension nuclear reactor cores. 
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